摘要翻译:
我们将维数为$2r\geq8$的复射影变体分类为一族由线$\mathbb{G}(1,r)$组成的两个同维数的草簇。它们要么是在正常表面上的纤维,这样一般的纤维就同构为$\G(1,r)$,要么是Grassmanian$\mathbb{G}(1,r+1)$。在余维两个线性空间或二次空间扫出的变体的更一般的上下文中,也考虑了$r=2$和$r=3$的情况。
---
英文标题:
《Varieties swept out by grassmannians of lines》
---
作者:
Roberto Munoz, Luis E. Sola Conde
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We classify complex projective varieties of dimension $2r \geq 8$ swept out by a family of codimension two grassmannians of lines $\mathbb{G}(1,r)$. They are either fibrations onto normal surfaces such that the general fibers are isomorphic to $\G(1,r)$ or the grassmannian $\mathbb{G}(1,r+1)$. The cases $r=2$ and $r=3$ are also considered in the more general context of varieties swept out by codimension two linear spaces or quadrics.
---
PDF链接:
https://arxiv.org/pdf/0810.0129