全部版块 我的主页
论坛 经济学人 二区 外文文献专区
377 0
2022-03-26
摘要翻译:
祖先最大似然法(AML)是一种从现存数据(树叶上的序列)中同时重建系统发生树和祖先序列的方法。在序列进化的马尔可夫模型下,树序列和祖先序列使观察给定数据的概率最大化,在该模型中,分支长度也是优化的,但约束在所有序列位点的任何边上取相同的值。AML不同于系统发生学中更常见的最大似然(ML)形式,因为ML在所有可能的祖先序列上都是平均值。我们早就知道ML在统计上是一致的--也就是说,随着序列长度的增长,它以接近1的概率收敛于正确的树。然而,AML的统计一致性还没有正式确定,尽管在20年前的文献中有非正式的评论。在这个简短的注释中,我们证明了一个普遍的结果,暗示AML在统计上是不一致的。特别地,我们发现AML可以“收缩”树中的短边,导致随着序列长度的增长,树没有内部分辨率。我们的结果适用于任意数量的分类群。
---
英文标题:
《Shrinkage Effect in Ancestral Maximum Likelihood》
---
作者:
Elchanan Mossel and Sebastien Roch and Mike Steel
---
最新提交年份:
2008
---
分类信息:

一级分类:Quantitative Biology        数量生物学
二级分类:Populations and Evolution        种群与进化
分类描述:Population dynamics, spatio-temporal and epidemiological models, dynamic speciation, co-evolution, biodiversity, foodwebs, aging; molecular evolution and phylogeny; directed evolution; origin of life
种群动力学;时空和流行病学模型;动态物种形成;协同进化;生物多样性;食物网;老龄化;分子进化和系统发育;定向进化;生命起源
--
一级分类:Computer Science        计算机科学
二级分类:Computational Engineering, Finance, and Science        计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
一级分类:Mathematics        数学
二级分类:Probability        概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Mathematics        数学
二级分类:Statistics Theory        统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics        统计学
二级分类:Statistics Theory        统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--

---
英文摘要:
  Ancestral maximum likelihood (AML) is a method that simultaneously reconstructs a phylogenetic tree and ancestral sequences from extant data (sequences at the leaves). The tree and ancestral sequences maximize the probability of observing the given data under a Markov model of sequence evolution, in which branch lengths are also optimized but constrained to take the same value on any edge across all sequence sites. AML differs from the more usual form of maximum likelihood (ML) in phylogenetics because ML averages over all possible ancestral sequences. ML has long been known to be statistically consistent -- that is, it converges on the correct tree with probability approaching 1 as the sequence length grows. However, the statistical consistency of AML has not been formally determined, despite informal remarks in a literature that dates back 20 years. In this short note we prove a general result that implies that AML is statistically inconsistent. In particular we show that AML can `shrink' short edges in a tree, resulting in a tree that has no internal resolution as the sequence length grows. Our results apply to any number of taxa.
---
PDF链接:
https://arxiv.org/pdf/802.0914
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群