摘要翻译:
研究了维数为2n的紧超Kaehler manfold的代数维数a(X)。我们证明a(X)至多是n,除非X是射影的。如果代数维数为0和Kodaira维数为0的紧致Kaehler流形具有极小模型,则只有0、n和2n值是可能的。在中维情况下,代数约简是全纯拉格朗日的。如果n=2,那么--没有任何假设--代数维数只取值0,2和4。本文给出了推广的Hyperkaehler流形的结构结果,并研究了nef线丛。
---
英文标题:
《Non-algebraic Hyperkaehler manifolds》
---
作者:
Frederic Campana, Keiji Oguiso, Thomas Peternell
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We study the algebraic dimension a(X) of a compact hyperkaehler manfold of dimension 2n. We show that a(X) is at most n unless X is projective. If a compact Kaehler manifold with algebraic dimension 0 and Kodaira dimension 0 has a minimal model, then only the values 0,n and 2n are possible. In case of middle dimension, the algebraic reduction is holomorphic Lagrangian. If n = 2, then - without any assumptions - the algebraic dimension only takes the values 0,2 and 4. The paper gives structure results for "generalised hyperkaehler" manifolds and studies nef lines bundles.
---
PDF链接:
https://arxiv.org/pdf/0804.1682