摘要翻译:
我们将高维因子模型与分数积分方法相结合,并推导出模型,其中不同持久性的非平稳、潜在协整数据被建模为公共分数积分因子的函数。提出了一种结合主成分和Kalman滤波的两阶段估计器。对高维美国宏观经济数据集的预测性能进行了研究,我们发现分数因子模型的收益可以很大,因为它们优于单变量自回归、主成分和因子扩大误差修正模型。
---
英文标题:
《Macroeconomic Forecasting with Fractional Factor Models》
---
作者:
Tobias Hartl
---
最新提交年份:
2020
---
分类信息:
一级分类:Economics        经济学
二级分类:Econometrics        计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
---
英文摘要:
  We combine high-dimensional factor models with fractional integration methods and derive models where nonstationary, potentially cointegrated data of different persistence is modelled as a function of common fractionally integrated factors. A two-stage estimator, that combines principal components and the Kalman filter, is proposed. The forecast performance is studied for a high-dimensional US macroeconomic data set, where we find that benefits from the fractional factor models can be substantial, as they outperform univariate autoregressions, principal components, and the factor-augmented error-correction model. 
---
PDF链接:
https://arxiv.org/pdf/2005.04897