摘要翻译:
高质量的数据是统计学和机器学习成功的基本因素。如果统计评估或
机器学习导致了创造价值的决策,数据贡献者可能希望分享该价值。本文提出了评估单个数据样本和样本集价值的方法,以及在不同的数据贡献者之间分配价值的方法。我们对单个样本使用Shapley值,对组合样本使用Owen值,并证明这些值可以在多项式时间内计算,尽管它们的定义具有与样本数成指数关系的项数。
---
英文标题:
《Computing a Data Dividend》
---
作者:
Eric Bax
---
最新提交年份:
2019
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Computer Science and Game Theory 计算机科学与博弈论
分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。
--
一级分类:Computer Science 计算机科学
二级分类:Computers and Society 计算机与社会
分类描述:Covers impact of computers on society, computer ethics, information technology and public policy, legal aspects of computing, computers and education. Roughly includes material in ACM Subject Classes K.0, K.2, K.3, K.4, K.5, and K.7.
涵盖计算机对社会的影响、计算机伦理、信息技术和公共政策、计算机的法律方面、计算机和教育。大致包括ACM学科类K.0、K.2、K.3、K.4、K.5和K.7中的材料。
--
一级分类:Economics 经济学
二级分类:General Economics 一般经济学
分类描述:General methodological, applied, and empirical contributions to economics.
对经济学的一般方法、应用和经验贡献。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
一级分类:Statistics 统计学
二级分类:Computation 计算
分类描述:Algorithms, Simulation, Visualization
算法、模拟、可视化
--
---
英文摘要:
Quality data is a fundamental contributor to success in statistics and machine learning. If a statistical assessment or machine learning leads to decisions that create value, data contributors may want a share of that value. This paper presents methods to assess the value of individual data samples, and of sets of samples, to apportion value among different data contributors. We use Shapley values for individual samples and Owen values for combined samples, and show that these values can be computed in polynomial time in spite of their definitions having numbers of terms that are exponential in the number of samples.
---
PDF链接:
https://arxiv.org/pdf/1905.01805