全部版块 我的主页
论坛 经济学人 二区 外文文献专区
371 0
2022-03-29
摘要翻译:
研究了一般秩信号模型下最坏情况下的鲁棒自适应波束形成问题。它的公式是最大化最坏情况下的信干噪比(SINR),并对期望信号的实际协方差矩阵进行半正定约束。在文献中,半定程序(SDP)技术和其他技术一起被用来近似地解决这个问题。本文提出了一种内二阶锥程序(SOCP)近似算法来求解该问题。特别地,构造并求解了一个SOCPs序列,当SOCPs具有不递减的最优值并收敛到局部最优值(通过大量的仿真,它实际上是全局最优值)。结果,我们的算法没有使用计算量大的SDP松弛技术。为了验证我们的内部逼近结果,给出了仿真实例,它们证明了新的鲁棒波束形成器在高信噪比区域的平均CPU时间(指示算法收敛的速度)方面的性能改善。
---
英文标题:
《An Inner SOCP Approximate Algorithm for Robust Adaptive Beamforming for
  General-Rank Signal Model》
---
作者:
Yongwei Huang, Sergiy A. Vorobyov
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  The worst-case robust adaptive beamforming problem for general-rank signal model is considered. Its formulation is to maximize the worst-case signal-to-interference-plus-noise ratio (SINR), incorporating a positive semidefinite constraint on the actual covariance matrix of the desired signal. In the literature, semidefinite program (SDP) techniques, together with others, have been applied to approximately solve this problem. Herein an inner second-order cone program (SOCP) approximate algorithm is proposed to solve it. In particular, a sequence of SOCPs are constructed and solved, while the SOCPs have the nondecreasing optimal values and converge to a locally optimal value (it is in fact a globally optimal value through our extensive simulations). As a result, our algorithm does not use computationally heavy SDP relaxation technique. To validate our inner approximation results, simulation examples are presented, and they demonstrate the improved performance of the new robust beamformer in terms of the averaged cpu-time (indicating how fast the algorithms converge) in a high signal-to-noise region.
---
PDF链接:
https://arxiv.org/pdf/1805.04656
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群