摘要翻译:
指出了无名引理(关于作用于向量丛上的代数群)与存在足够多独立有理协变之间的密切联系。特别地,这导致了一个新的自然证明的无名引理。对于线性还原群,该方法有一个基于积分协变的改进变体。这符合不变理论的通常情况,并产生了具有构造性的无名引理的一个版本。
---
英文标题:
《Covariants and the no-name lemma》
---
作者:
M. Domokos
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
A close connection between the no-name lemma (concerning algebraic groups acting on vector bundles) and the existence of sufficiently many independent rational covariants is pointed out. In particular, this leads to a new natural proof of the no-name lemma. For linearly reductive groups, the approach has a refined variant based on integral covariants. This fits into the usual context of invariant theory, and yields a version of the no-name lemma that has a constructive nature.
---
PDF链接:
https://arxiv.org/pdf/0803.1327