摘要翻译:
完备局部区域上的p-可除群决定了其类属纤维的Tate模上的Galois表示。对于双无穷小群的混合特征的普适变形和无穷小群的正特征的普适变形的p秩层,我们确定了这种表示的象。该方法是基于牛顿多边形分层性质的变形变元对已知一维群情况的一种简化。
---
英文标题:
《Tate modules of universal p-divisible groups》
---
作者:
Eike Lau
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
A p-divisible group over a complete local domain determines a Galois representation on the Tate module of its generic fibre. We determine the image of this representation for the universal deformation in mixed characteristic of a bi-infinitesimal group and for the p-rank strata of the universal deformation in positive characteristic of an infinitesimal group. The method is a reduction to the known case of one-dimensional groups by a deformation argument based on properties of the stratification by Newton polygons.
---
PDF链接:
https://arxiv.org/pdf/0803.1390