摘要翻译:
在Stein无偏风险估计(SURE)框架下,研究了套索的有效自由度。我们证明了非零系数的个数是套索自由度的无偏估计--这一结论不需要对预测器作特殊的假设。另外,证明了无偏估计量是渐近相合的。有了这些结果,各种模型选择准则--$C_P$,AIC和BIC--是可用的,这些准则与LARS算法一起提供了一个原则和有效的方法,以获得最优的lasso拟合,而计算量仅需一个普通的最小二乘拟合。
---
英文标题:
《On the "degrees of freedom" of the lasso》
---
作者:
Hui Zou, Trevor Hastie, Robert Tibshirani
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics        数学
二级分类:Statistics Theory        统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics        统计学
二级分类:Statistics Theory        统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
  We study the effective degrees of freedom of the lasso in the framework of Stein's unbiased risk estimation (SURE). We show that the number of nonzero coefficients is an unbiased estimate for the degrees of freedom of the lasso--a conclusion that requires no special assumption on the predictors. In addition, the unbiased estimator is shown to be asymptotically consistent. With these results on hand, various model selection criteria--$C_p$, AIC and BIC--are available, which, along with the LARS algorithm, provide a principled and efficient approach to obtaining the optimal lasso fit with the computational effort of a single ordinary least-squares fit. 
---
PDF链接:
https://arxiv.org/pdf/712.0881