摘要翻译:
我们首先讨论了用核估计量估计一个半区间的现货波动率的问题。对于一般的双边核,我们证明了一个具有最优收敛速度的中心极限定理。其次,我们引入了一种新的现货波动率预平均/核估计器来处理超高频观测的微观结构噪声。证明了具有最优速率的估计误差的中心极限定理,并研究了带宽和核函数的最优选择。我们证明了对于指数核,预平均/核估计的渐近方差是最小的,从而证明了使用无界支持核的必要性。我们还开发了一个可行的实现所提出的估计与最佳带宽。蒙特卡罗实验验证了该方法的优越性。
---
英文标题:
《Kernel Estimation of Spot Volatility with Microstructure Noise Using
  Pre-Averaging》
---
作者:
Jos\'e E. Figueroa-L\'opez and Bei Wu
---
最新提交年份:
2021
---
分类信息:
一级分类:Economics        经济学
二级分类:Econometrics        计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Mathematics        数学
二级分类:Statistics Theory        统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Quantitative Finance        数量金融学
二级分类:Statistical Finance        统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Statistics        统计学
二级分类:Statistics Theory        统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
  We first revisit the problem of estimating the spot volatility of an It\^o semimartingale using a kernel estimator. We prove a Central Limit Theorem with optimal convergence rate for a general two-sided kernel. Next, we introduce a new pre-averaging/kernel estimator for spot volatility to handle the microstructure noise of ultra high-frequency observations. We prove a Central Limit Theorem for the estimation error with an optimal rate and study the optimal selection of the bandwidth and kernel functions. We show that the pre-averaging/kernel estimator's asymptotic variance is minimal for exponential kernels, hence, justifying the need of working with kernels of unbounded support as proposed in this work. We also develop a feasible implementation of the proposed estimators with optimal bandwidth. Monte Carlo experiments confirm the superior performance of the devised method. 
---
PDF链接:
https://arxiv.org/pdf/2004.01865