全部版块 我的主页
论坛 经济学人 二区 外文文献专区
465 0
2022-03-31
摘要翻译:
设X是辛群的标志变体。本文提出了一个组合显式Schubert多项式理论,它表示X上同调环的Borel表示中的Schubert类,并用这些多项式来描述X上的算术Schubert演算,同时给出了计算X上自然算术Chern数的方法,并证明它们都是有理数。
---
英文标题:
《Schubert polynomials and Arakelov theory of symplectic flag varieties》
---
作者:
Harry Tamvakis
---
最新提交年份:
2013
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Combinatorics        组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--

---
英文摘要:
  Let X be the flag variety of the symplectic group. We propose a theory of combinatorially explicit Schubert polynomials which represent the Schubert classes in the Borel presentation of the cohomology ring of X. We use these polynomials to describe the arithmetic Schubert calculus on X. Moreover, we give a method to compute the natural arithmetic Chern numbers on X, and show that they are all rational numbers.
---
PDF链接:
https://arxiv.org/pdf/0808.1329
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群