摘要翻译:
我们考虑有限域上函数域F_0<F_1<...的一个塔,使得该塔上的每一个F_i分支的每一个位置和序列亏格(F_i)/[F_i:F_0]都有一个有限极限。我们还构造了一个塔,其中每一个位置都分枝,序列N_i/[f_i:f_0]有一个正极限,其中N_i是f_i的一次位置数。这些塔回答了Stichtenoth提出的问题。
---
英文标题:
《Everywhere ramified towers of global function fields》
---
作者:
Iwan Duursma, Bjorn Poonen, and Michael Zieve
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We consider a tower of function fields F_0 < F_1 < ... over a finite field such that every place of every F_i ramified in the tower and the sequence genus(F_i)/[F_i:F_0] has a finite limit. We also construct a tower in which every place ramifies and the sequence N_i/[F_i:F_0] has a positive limit, where N_i is the number of degree-one places of F_i. These towers answer questions posed by Stichtenoth.
---
PDF链接:
https://arxiv.org/pdf/0810.2842