摘要翻译:
在这项工作中,我们引入了一种混合GPs来解决数据关联问题,即根据产生它们的源来标记一组观测数据。与以前提出的几种GP混合物不同,新的混合物具有不使用门控函数来确定样品和混合物组分的关联的显著特点。相反,混合中的所有GPs都是全局的,样本按照输入空间的“轨迹”进行聚类。我们使用一种非标准变分贝叶斯算法来有效地恢复样本标签和学习超参数。我们展示了如何消除多目标跟踪问题的歧义,也探讨了模型在传统回归设置中的特点。
---
英文标题:
《Overlapping Mixtures of Gaussian Processes for the Data Association
  Problem》
---
作者:
Miguel L\'azaro-Gredilla, Steven Van Vaerenbergh, and Neil Lawrence
---
最新提交年份:
2011
---
分类信息:
一级分类:Statistics        统计学
二级分类:Machine Learning        
机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
---
英文摘要:
  In this work we introduce a mixture of GPs to address the data association problem, i.e. to label a group of observations according to the sources that generated them. Unlike several previously proposed GP mixtures, the novel mixture has the distinct characteristic of using no gating function to determine the association of samples and mixture components. Instead, all the GPs in the mixture are global and samples are clustered following "trajectories" across input space. We use a non-standard variational Bayesian algorithm to efficiently recover sample labels and learn the hyperparameters. We show how multi-object tracking problems can be disambiguated and also explore the characteristics of the model in traditional regression settings. 
---
PDF链接:
https://arxiv.org/pdf/1108.3372