摘要翻译:
单像素成像(SPI)的一个主要缺点是需要多次连续光照来捕获单个图像,且捕获时间长。傅里叶模式和阿达玛模式等基光照模式比随机模式具有更好的成像效率。但是,由于基模式是固定的,并且对不同的目标图像不自适应,所以该算法的性能仍然不理想。提出了一种基于主成分分析(PCA)的图像特征自适应设计和优化光照模式的新方法。仿真和实验结果表明,我们提出的方案在成像效率方面优于传统的傅里叶SPI。
---
英文标题:
《Design of optimal illumination patterns in single-pixel imaging using
image dictionaries》
---
作者:
Jun Feng, Shuming Jiao, Yang Gao, Ting Lei, Xiaocong Yuan
---
最新提交年份:
2020
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Image and Video Processing 图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
---
英文摘要:
Single-pixel imaging (SPI) has a major drawback that many sequential illuminations are required for capturing one single image with long acquisition time. Basis illumination patterns such as Fourier patterns and Hadamard patterns can achieve much better imaging efficiency than random patterns. But the performance is still sub-optimal since the basis patterns are fixed and non-adaptive for varying object images. This Letter proposes a novel scheme for designing and optimizing the illumination patterns adaptively from an image dictionary by extracting the common image features using principal component analysis (PCA). Simulation and experimental results reveal that our proposed scheme outperforms conventional Fourier SPI in terms of imaging efficiency.
---
PDF链接:
https://arxiv.org/pdf/1806.0134