摘要翻译:
研究了非紧参数空间上Brieskorn格的变分,并讨论了边界因子上相应的极限对象。我们研究了捻度的相关变化和相应的极限混合捻度结构。构造了正则奇异Brieskorn格的紧致分类空间,证明了它的纯极化部分具有自然hermitian结构,诱导距离使它成为完备度量空间。
---
英文标题:
《Limits of families of Brieskorn lattices and compactified classifying
spaces》
---
作者:
Claus Hertling and Christian Sevenheck
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
---
英文摘要:
We investigate variations of Brieskorn lattices over non-compact parameter spaces, and discuss the corresponding limit objects on the boundary divisor. We study the associated variation of twistors and the corresponding limit mixed twistor structures. We construct a compact classifying space for regular singular Brieskorn lattices and prove that its pure polarized part carries a natural hermitian structure and that the induced distance makes it into a complete metric space.
---
PDF链接:
https://arxiv.org/pdf/0805.4777