全部版块 我的主页
论坛 经济学人 二区 外文文献专区
348 0
2022-04-02
摘要翻译:
从海量数据中提取特征进行目标识别是一项具有挑战性的任务。卷积神经网络可以用来应对挑战,但它往往需要大量的计算资源。本文提出了一种计算效率高的卷积模块SdcBlock,并在此基础上引入了用于目标识别任务的卷积网络SdcNet。在该模块中,采用优化的连续深度卷积,并在适当的数据管理支持下,生成包含高密度和更多种类特征信息的向量。超参数可以很容易地调整,以适应不同计算限制下的各种任务,而不会显著影响性能。实验结果表明,SdcNet在CIFAR-10中仅用55M次错误就达到了5.60%的误码率,在103M次错误的中等容量下,误码率进一步降低到5.24%。验证了SdcNet的预期计算效率。
---
英文标题:
《SdcNet: A Computation-Efficient CNN for Object Recognition》
---
作者:
Yunlong Ma and Chunyan Wang
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Image and Video Processing        图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
一级分类:Computer Science        计算机科学
二级分类:Computer Vision and Pattern Recognition        计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--

---
英文摘要:
  Extracting features from a huge amount of data for object recognition is a challenging task. Convolution neural network can be used to meet the challenge, but it often requires a large number of computation resources. In this paper, a computation-efficient convolutional module, named SdcBlock, is proposed and based on it, the convolution network SdcNet is introduced for object recognition tasks. In the proposed module, optimized successive depthwise convolutions supported by appropriate data management is applied in order to generate vectors containing high density and more varieties of feature information. The hyperparameters can be easily adjusted to suit varieties of tasks under different computation restrictions without significantly jeopardizing the performance. The experiments have shown that SdcNet achieved an error rate of 5.60% in CIFAR-10 with only 55M Flops and also reduced further the error rate to 5.24% using a moderate volume of 103M Flops. The expected computation efficiency of the SdcNet has been confirmed.
---
PDF链接:
https://arxiv.org/pdf/1805.01317
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群