摘要翻译:
我们证明了对于代数还原群$G$,Deodhar定义的标志簇$G/B$中来自Bialynicki-Birula分解的双Schubert胞的划分一般不是分层。我们给出了一个B$_n$型群的反例,其中某个维数为$2n$的特定单元的闭包与维数为$3n-3$的单元有一个非平凡交集
---
英文标题:
《Note on the Deodhar decomposition of a double Schubert cell》
---
作者:
Olivier Dudas (LM-Besan\c{c}on)
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Group Theory 群论
分类描述:Finite groups, topological groups, representation theory, cohomology, classification and structure
有限群、拓扑群、表示论、上同调、分类与结构
--
---
英文摘要:
We show that for an algebraic reductive group $G$, the partition of a double Schubert cell in the flag variety $G/B$ defined by Deodhar, and coming from a Bialynicki-Birula decomposition, is not a stratification in general. We give a counterexample for a group of type B$_n$, where the closure of some specific cell of dimension $2n$ has a non-trivial intersection with a cell of dimension $3n-3$
---
PDF链接:
https://arxiv.org/pdf/0807.2198