摘要翻译:
在p体Sherrington-Kirkpatrick模型中,用复制数n为有限的复制方法计算了自由能的累积量母函数phi(n)和速率函数Sigma(f)。从扰动论元出发,我们证明了累积量母函数在n=0附近是常数。另一方面,借助phi(n)的两个解析性质,再次导出了phi(n)的行为。然而,这也被证明是在有限的n值时被打破的,这给出了速率函数中的特征值,靠近自由能的热力学值。通过将phi(n)延拓为n的函数,我们找到了至少在该模型中导出1RSB解的一种方法,即将RS解固定为单调递增函数。
---
英文标题:
《Large Deviation Property of Free Energy in p-Body
Sherrington-Kirkpatrick Model》
---
作者:
Tetsuya Nakajima and Koji Hukushima
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与
神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
Cumulant generating function phi(n) and rate function Sigma(f) of the free energy is evaluated in p-body Sherrington-Kirkpatrick model by using the replica method with the replica number n finite. From a perturbational argument, we show that the cumulant generating function is constant in the vicinity of n = 0. On the other hand, with the help of two analytic properties of phi(n), the behavior of phi(n) is derived again. However this is also shown to be broken at a finite value of n, which gives a characteristic value in the rate function near the thermodynamic value of the free energy. Through the continuation of phi(n) as a function of n, we find out a way to derive the 1RSB solution at least in this model, which is to fix the RS solution to be a monotone increasing function.
---
PDF链接:
https://arxiv.org/pdf/802.1302