摘要翻译:
一个著名的猜想断言,光滑三元$X\子集\{\MathBB P}^5$是二次正规的,唯一的例外是Palatini卷轴。作为一个更一般陈述的推论,我们得到了与前一个猜想有关的如下结果:如果$X\子集\{\MathBB P}^5$不是二次正规的,那么它的三重曲线是可约的。对于高维变型也给出了类似的结果。
---
英文标题:
《On the quadratic normality and the triple curve of three dimensional
  subvarieties of ${\mathbb P}^5$》
---
作者:
Pietro De Poi, Emilia Mezzetti, Jos\'e Carlos Sierra
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
  A well-known conjecture asserts that smooth threefolds $X\subset\{\mathbb P}^5$ are quadratically normal with the only exception of the Palatini scroll. As a corollary of a more general statement we obtain the following result, which is related to the previous conjecture: If $X\subset\{\mathbb P}^5$ is not quadratically normal, then its triple curve is reducible. Similar results are also given for higher dimensional varieties. 
---
PDF链接:
https://arxiv.org/pdf/0811.1515