摘要翻译:
考虑G$曲线的属,它允许D$复盖到椭圆曲线,只在一点分枝,分支类型固定。这类覆盖的轨迹形成一个单参数族$Y$,它自然映射到稳定亏格$g$曲线$\bar{\mathcal M}_{g}$的模空间中。我们研究了$y$的几何学,并给出了一种组合方法来研究它的斜率、不可约分量、亏格和轨道点。作为我们方法的副产品,我们从经典数论中找到了一些等式。此外,我们的方法与平铺曲面的观点建立了对应关系。我们还利用我们的结果研究了$\bar{\mathcal M}_{g}$上有效因子斜率的下界。
---
英文标题:
《Covers of Elliptic Curves and the Lower Bound for Slopes of Effective
Divisors on $\bar{\mathcal M}_{g}$》
---
作者:
Dawei Chen
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
一级分类:Mathematics 数学
二级分类:Geometric Topology 几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
---
英文摘要:
Consider genus $g$ curves that admit degree $d$ covers to elliptic curves only branched at one point with a fixed ramification type. The locus of such covers forms a one parameter family $Y$ that naturally maps into the moduli space of stable genus $g$ curves $\bar{\mathcal M}_{g}$. We study the geometry of $Y$, and produce a combinatorial method by which to investigate its slope, irreducible components, genus and orbifold points. As a by-product of our approach, we find some equalities from classical number theory. Moreover, a correspondence between our method and the viewpoint of square-tiled surfaces is established. We also use our results to study the lower bound for slopes of effective divisors on $\bar{\mathcal M}_{g}$.
---
PDF链接:
https://arxiv.org/pdf/0704.3994