摘要翻译:
我们将流动电子系统中量子相变的Hertz-Millis理论推广到离散对称性破缺的相。利用泛函重整化群框架下的一组耦合流动方程,我们计算了量子临界点附近的二级相变线T_c(delta),其中delta是一个非热控制参数。我们分析了量子涨落和经典涨落在不同能量尺度下的相互作用和相对重要性,并将金兹堡温度T_G和转变温度T_c进行了比较,后者与一个非高斯不动点有关。
---
英文标题:
《Renormalization group for phases with broken discrete symmetry near
quantum critical points》
---
作者:
P. Jakubczyk, P. Strack, A.A. Katanin, W. Metzner
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Strongly Correlated Electrons 强关联电子
分类描述:Quantum magnetism, non-Fermi liquids, spin liquids, quantum criticality, charge density waves, metal-insulator transitions
量子磁学,非费米液体,自旋液体,量子临界性,电荷密度波,金属-绝缘体跃迁
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
---
英文摘要:
We extend the Hertz-Millis theory of quantum phase transitions in itinerant electron systems to phases with broken discrete symmetry. Using a set of coupled flow equations derived within the functional renormalization group framework, we compute the second order phase transition line T_c(delta), with delta a non-thermal control parameter, near a quantum critical point. We analyze the interplay and relative importance of quantum and classical fluctuations at different energy scales, and we compare the Ginzburg temperature T_G to the transition temperature T_c, the latter being associated with a non-Gaussian fixed-point.
---
PDF链接:
https://arxiv.org/pdf/802.1868