摘要翻译:
本文证明了Schneider定理的推广,该定理给出了复数上射影曲面具有充足余切丛的判据。在回顾了不同的正性概念之后,我们引入了一个稍弱的放大性概念,我们称之为准充分,然后能够将施耐德的结果推广到更高维度。
---
英文标题:
《Positivity of cotangent bundles》
---
作者:
Kelly Jabbusch
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this paper we prove a generalization of a theorem of Schneider, which gives a criterion for a projective surface over the complex numbers to have an ample cotangent bundle. After reviewing different notions of positivity, we introduce a slightly weaker notion of ampleness, which we call quasi-ample, and then are able to extend Schneider's result to higher dimensions.
---
PDF链接:
https://arxiv.org/pdf/0803.0622