摘要翻译:
我们研究了$\MathBB{P}^3$的二重、三重和四重点的一般并集$y$的假设。我们用Horace微分引理证明了$y$具有$d\ge41$的期望假设。我们还借助计算机代数讨论了低次的情形。
---
英文标题:
《Postulation of general quartuple fat point schemes in P^3》
---
作者:
Edoardo Ballico and Maria Chiara Brambilla
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We study the postulation of a general union $Y$ of double, triple, and quartuple points of $\mathbb{P}^3$. We prove that $Y$ has the expected postulation in degree $d\ge 41$, using the Horace differential lemma. We also discuss the cases of low degree with the aid of computer algebra.
---
PDF链接:
https://arxiv.org/pdf/0810.1372