摘要翻译:
本文介绍了概率图形模型的重要性抽样和/或方法。与重要性采样相反,和/或重要性采样将样本缓存在和/或空间中,然后从存储的样本中提取新的样本均值。我们证明了和/或重要性抽样可能比重要性抽样具有更低的方差;从而提供了比重要性抽样更好的理论依据。我们的经验评估表明,在许多情况下和/或重要性抽样远比重要性抽样准确。
---
英文标题:
《AND/OR Importance Sampling》
---
作者:
Vibhav Gogate, Rina Dechter
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
The paper introduces AND/OR importance sampling for probabilistic graphical models. In contrast to importance sampling, AND/OR importance sampling caches samples in the AND/OR space and then extracts a new sample mean from the stored samples. We prove that AND/OR importance sampling may have lower variance than importance sampling; thereby providing a theoretical justification for preferring it over importance sampling. Our empirical evaluation demonstrates that AND/OR importance sampling is far more accurate than importance sampling in many cases.
---
PDF链接:
https://arxiv.org/pdf/1206.3232