摘要翻译:
我们证明了在非常一般的假设下,增次多项式高斯系统的随机序列的零点几乎肯定地收敛于期望的极限分布。特别地,在C^m的正则紧子集K上正交化的m个N次多项式组的零点的归一化分布,当N次为无穷大时,几乎必然收敛于K上的平衡测度。
---
英文标题:
《Convergence of random zeros on complex manifolds》
---
作者:
Bernard Shiffman
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
We show that the zeros of random sequences of Gaussian systems of polynomials of increasing degree almost surely converge to the expected limit distribution under very general hypotheses. In particular, the normalized distribution of zeros of systems of m polynomials of degree N, orthonormalized on a regular compact subset K of C^m, almost surely converge to the equilibrium measure on K as the degree N goes to infinity.
---
PDF链接:
https://arxiv.org/pdf/0708.2754