摘要翻译:
独立关系的表示一般建立在众所周知的独立的半格公理之上。最近,有人提出了一种表示,它捕获一组独立关系的支配陈述,任何其他陈述都可以从这些陈述中通过公理产生;这个集合的基数被用来表示关系的复杂性。在支配思想的基础上,我们引入了稳定性的概念,以提供独立性的更紧凑的表示。我们给出了一个建立这种表示的关联算法,我们证明了在我们的稳定性概念下,许多独立关系的复杂度比现有的表示要低。
---
英文标题:
《Stable Independance and Complexity of Representation》
---
作者:
Peter de Waal, Linda C. van der Gaag
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
The representation of independence relations generally builds upon the well-known semigraphoid axioms of independence. Recently, a representation has been proposed that captures a set of dominant statements of an independence relation from which any other statement can be generated by means of the axioms; the cardinality of this set is taken to indicate the complexity of the relation. Building upon the idea of dominance, we introduce the concept of stability to provide for a more compact representation of independence. We give an associated algorithm for establishing such a representation.We show that, with our concept of stability, many independence relations are found to be of lower complexity than with existing representations.
---
PDF链接:
https://arxiv.org/pdf/1207.4120