摘要翻译:
我们给出了在有理复曲面上构造许多正熵自同构例子的方法。一般的思想是从一个二次Cremona变换开始,固定一个约化的三次曲线,然后利用三次曲线上的群结构来理解何时可以通过重复爆破来消除变换的不确定性和异常行为。
---
英文标题:
《Cremona transformations, surface automorphisms and plane cubics》
---
作者:
Jeffrey Diller
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Dynamical Systems 动力系统
分类描述:Dynamics of differential equations and flows, mechanics, classical few-body problems, iterations, complex dynamics, delayed differential equations
微分方程和流动的动力学,力学,经典的少体问题,迭代,复杂动力学,延迟微分方程
--
---
英文摘要:
We give a method for constructing many examples of automorphisms with positive entropy on rational complex surfaces. The general idea is to begin with a quadratic Cremona transformation that fixes a reduced cubic curve and then use the group structure on the cubic to understand when the indeterminacy and exceptional behavior of the transformation may be eliminated by repeated blowing up.
---
PDF链接:
https://arxiv.org/pdf/0811.3038