摘要翻译:
我们证明了特征为$p\ge0$的完美域$k$上的平面Cremona群包含一个素数阶元素$\ell\ge7$不等于$p$当且仅当在$k$上存在一个二维代数环面$t$,使得$t(k)$包含一个$\ell$阶元素。如果$P=0$且$k$不包含本原的$\ell$th单位根,我们证明了$\Cr_2(k)$中不存在素数阶$\ell>7$的元素,且所有7阶元素都是共轭的。
---
英文标题:
《On elements of prime order in the plane Cremona group over a perfect
field》
---
作者:
Igor V. Dolgachev and Vasily A. Iskovskikh
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
We show that the plane Cremona group over a perfect field $k$ of characteristic $p \ge 0$ contains an element of prime order $\ell\ge 7$ not equal to $p$ if and only if there exists a 2-dimensional algebraic torus $T$ over $k$ such that $T(k)$ contains an element of order $\ell$. If $p = 0$ and $k$ does not contain a primitive $\ell$-th root of unity, we show that there are no elements of prime order $\ell > 7$ in $\Cr_2(k)$ and all elements of order 7 are conjugate.
---
PDF链接:
https://arxiv.org/pdf/0707.4305