摘要翻译:
四次穿孔黎曼球的纯辫群\γ作用于该球的表示型的SL(2,C)-模M。将M中的点划分为\γ轨道。我们证明了在这种情况下,Riemann-Hilbert问题的多个显式解的单群是SU(2)的子群。这些解大多是在SU(2)中有稠密图像,而在M中有有限个γ-轨道的表示的例子。这些例子涉及常平均曲率曲面的显式浸入。
---
英文标题:
《Explicit Connections with SU(2)-Monodromy》
---
作者:
Eugene Z. Xia
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Classical Analysis and ODEs 经典分析与颂歌
分类描述:Special functions, orthogonal polynomials, harmonic analysis, ODE's, differential relations, calculus of variations, approximations, expansions, asymptotics
特殊函数、正交多项式、调和分析、Ode、微分关系、变分法、逼近、展开、渐近
--
---
英文摘要:
The pure braid group \Gamma of a quadruply-punctured Riemann sphere acts on the SL(2,C)-moduli M of the representation variety of such sphere. The points in M are classified into \Gamma-orbits. We show that, in this case, the monodromy groups of many explicit solutions to the Riemann-Hilbert problem are subgroups of SU(2). Most of these solutions are examples of representations that have dense images in SU(2), but with finite \Gamma-orbits in M. These examples relate to explicit immersions of constant mean curvature surfaces.
---
PDF链接:
https://arxiv.org/pdf/0709.0549