摘要翻译:
给定亏格G>1的有向闭曲面X和半单李群G,设R_G是G中X的基本群的约化表示的模空间,当n>=4偶时,我们确定了R_PGL(n,R)的连通分量数。为了得到连通分量的第一次划分,我们首先对这样一个曲面上的实射影丛进行分类。然后,我们通过紧致黎曼曲面上的Higgs束理论,使用全纯方法来实现我们的目标。我们还证明了R_SL(3,R)中Hitchin分量的补与R_SO(3)是同伦等价的。
---
英文标题:
《Representations of surface groups in the projective general linear group》
---
作者:
Andr\'e Oliveira
---
最新提交年份:
2019
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
---
英文摘要:
Given a closed, oriented surface X of genus g>1, and a semisimple Lie group G, let R_G be the moduli space of reductive representations of the fundamental group of X in G. We determine the number of connected components of R_PGL(n,R), for n>=4 even. In order to have a first division of connected components, we first classify real projective bundles over such a surface. Then we achieve our goal, using holomorphic methods through the theory of Higgs bundles over compact Riemann surfaces. We also show that the complement of the Hitchin component in R_SL(3,R) is homotopically equivalent to R_SO(3).
---
PDF链接:
https://arxiv.org/pdf/0901.2314