摘要翻译:
利用复圈几何研究了微分算子的(扭曲)环对与$\mathfrak{sp}{2n}$的Borel子代数$\mathfrak{sp}_{2n}$相交的最小轨道$\bar O_{\mathrm{min}}$的(Zarisky)闭包的一个特殊不可约分量的奇异性的分解,证明了它们是$\mathfrak{sp}_{2n}$的泛包络代数(UEA)的一个子代数的同态像,该泛包络代数包含决定最小幂零轨道的最大抛物子代数$\mathfrak P$。进一步,利用Weyl代数上的Fourier变换,我们证明了适权射影空间的(扭)环是由同一子代数得到的。最后,从表象理论的角度研究了这个子代数,我们对由上述奇点分解而来的$\mathfrak{sp}{2n}$的UEA发现了新的本原理想,并重新发现了旧的本原理想。
---
英文标题:
《Weighted projective spaces and minimal nilpotent orbits》
---
作者:
C. A. Rossi
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics        数学
二级分类:Rings and Algebras        环与代数
分类描述:Non-commutative rings and algebras, non-associative algebras, universal algebra and lattice theory, linear algebra, semigroups
非交换环与代数,非结合代数,泛代数与格论,线性代数,半群
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
  We investigate (twisted) rings of differential operators on the resolution of singularities of a particular irreducible component of the (Zarisky) closure of the minimal orbit $\bar O_{\mathrm{min}}$ of $\mathfrak{sp}_{2n}$, intersected with the Borel subalgebra $\mathfrak n_+$ of $\mathfrak{sp}_{2n}$, using toric geometry and show that they are homomorphic images of a subalgebra of the Universal Enveloping Algebra (UEA) of $\mathfrak{sp}_{2n}$, which contains the maximal parabolic subalgebra $\mathfrak p$ determining the minimal nilpotent orbit. Further, using Fourier transforms on Weyl algebras, we show that (twisted) rings of well-suited weighted projective spaces are obtained from the same subalgebra. Finally, investigating this subalgebra from the representation-theoretical point of view, we find new primitive ideals and rediscover old ones for the UEA of $\mathfrak{sp}_{2n}$ coming from the aforementioned resolution of singularities. 
---
PDF链接:
https://arxiv.org/pdf/0708.1714