摘要翻译:
我们引入并研究了模运算的对偶费曼变换的概念。本文推广了Kontsevich的对偶构造,并从可缩微分次分Frobenius代数中给出了产生图上同调类的概念性解释。模运算量的对偶费曼变换与Getzler和Kapranov引入的费曼变换在真空图上的对偶性是线性对偶的。与费曼变换形成鲜明对比的是,对偶概念允许通过生成元和关系进行极其简单的呈现;这导致了对其代数的明确和容易的描述。我们讨论了对偶Feynman变换的进一步推广,它的代数不一定是可缩的。这自然产生了类似于Boardman-Vogt拓扑树复合体的双色图复合体。
---
英文标题:
《Dual Feynman transform for modular operads》
---
作者:
Joseph Chuang and Andrey Lazarev
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Quantum Algebra 量子代数
分类描述:Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
量子群,skein理论,运算代数和图解代数,量子场论
--
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We introduce and study the notion of a dual Feynman transform of a modular operad. This generalizes and gives a conceptual explanation of Kontsevich's dual construction producing graph cohomology classes from a contractible differential graded Frobenius algebra. The dual Feynman transform of a modular operad is indeed linear dual to the Feynman transform introduced by Getzler and Kapranov when evaluated on vacuum graphs. In marked contrast to the Feynman transform, the dual notion admits an extremely simple presentation via generators and relations; this leads to an explicit and easy description of its algebras. We discuss a further generalization of the dual Feynman transform whose algebras are not necessarily contractible. This naturally gives rise to a two-colored graph complex analogous to the Boardman-Vogt topological tree complex.
---
PDF链接:
https://arxiv.org/pdf/0704.2561