摘要翻译:
本文构造了固定n-流形M上凸射影结构的参数空间的一个紧化。该参数空间是M的基本群在SL_{n+1}(R)中表示的各种特征的闭半代数子集。边界是半代数集的对数极限集的逆系统的逆极限,在某种意义上是参数空间的纯化。边界点的解释也可以用热带几何学给出。这种构造是Teichm“Uller空间紧化构造的推广。
---
英文标题:
《A compactification for the spaces of convex projective structures on
manifolds》
---
作者:
Daniele Alessandrini
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Geometric Topology 几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this paper we construct a compactification for the parameter space of convex projective structures on a fixed n-manifold M. This parameter space is a closed semi-algebraic subset of the variety of characters of representations of the fundamental group of M in SL_{n+1}(R). The boundary is the inverse limit of an inverse system of logarithmic limit sets of this semi-algebraic set, in a sense it is the tropicalization of the parameter space. The interpretation of the boundary points can also be given using tropical geometry. This construction is a generalization of the construction of compactification of the Teichm\"uller spaces.
---
PDF链接:
https://arxiv.org/pdf/0801.0165