摘要翻译:
研究非代数闭域上超环代数的有限维表示。主要结果涉及不可约表示的分类,Weyl模的构造,Weyl模的基变化,不可约模和Weyl模的张量积,以及下Abel范畴的块分解。有几个结果与多项式代数的不可约表示和伽罗瓦理论的研究有关。
---
英文标题:
《Finite-Dimensional Representations of Hyper Loop Algebras Over
Non-Algebraically Closed Fields》
---
作者:
Dijana Jakelic, Adriano Moura
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We study finite-dimensional representations of hyper loop algebras over non-algebraically closed fields. The main results concern the classification of the irreducible representations, the construction of the Weyl modules, base change, tensor products of irreducible and Weyl modules, and the block decomposition of the underlying abelian category. Several results are interestingly related to the study of irreducible representations of polynomial algebras and Galois theory.
---
PDF链接:
https://arxiv.org/pdf/0711.0795