摘要翻译:
我们在三角范畴上引入了“压结构”的概念,作为S.Morel关于混合l-adic束的权截断形式的抽象。本文研究了G-方案X上G-等变相干束的导出范畴D_G(X)上的这些结构。我们的主要结果表明,当G作用于具有有限多个轨道的X时,如何赋予这个导出范畴一族非平凡的压强结构。我们还描述了一个在具有给定T-和压-结构的三角范畴上产生新T-结构的一般构造,并证明了第一作者在D_G(X)上引入的交错T-结构是这样产生的。
---
英文标题:
《Baric structures on triangulated categories and coherent sheaves》
---
作者:
Pramod N. Achar and David Treumann
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
---
英文摘要:
We introduce the notion of a "baric structure" on a triangulated category, as an abstraction of S. Morel's weight truncation formalism for mixed l-adic sheaves. We study these structures on the derived category D_G(X) of G-equivariant coherent sheaves on a G-scheme X. Our main result shows how to endow this derived category with a family of nontrivial baric structures when G acts on X with finitely many orbits. We also describe a general construction for producing a new t-structure on a triangulated category equipped with given t- and baric structures, and we prove that the staggered t-structures on D_G(X) introduced by the first author arise in this way.
---
PDF链接:
https://arxiv.org/pdf/0808.3209