摘要翻译:
本文提出了一种新的图形模型中边缘地图问题的任意时间算法。详细描述了该算法,研究了算法的复杂度和收敛速度,并讨论了该算法与前人理论结果的关系。结果表明,当模型的底层图树宽有界时,该算法以多项式时间运行,并且保证了在一定的计算资源内得到的上下界。对真实模型和合成模型的实验表明,该方法与Park和Darwiche的系统搜索方法相比具有较好的性能,特别是在地图变量多、树宽适中的情况下。
---
英文标题:
《Anytime Marginal MAP Inference》
---
作者:
Denis Maua (IDSIA), Cassio De Campos (IDSIA)
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Statistics 统计学
二级分类:Machine Learning
机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
英文摘要:
This paper presents a new anytime algorithm for the marginal MAP problem in graphical models. The algorithm is described in detail, its complexity and convergence rate are studied, and relations to previous theoretical results for the problem are discussed. It is shown that the algorithm runs in polynomial-time if the underlying graph of the model has bounded tree-width, and that it provides guarantees to the lower and upper bounds obtained within a fixed amount of computational resources. Experiments with both real and synthetic generated models highlight its main characteristics and show that it compares favorably against Park and Darwiche's systematic search, particularly in the case of problems with many MAP variables and moderate tree-width.
---
PDF链接:
https://arxiv.org/pdf/1206.6424