姓名: 魏权龄
职称/职务:教授
研究领域:
1. 运筹学(数学规划,多目标规划,凸分折,数据包络分析(DEA)等) ;
2. 数量经济学;
3. 数理经济学.
教授课程:硕士生:数理分析方法、最优化理论与方法
博士生:经济中的优化方法、数据包络分析
主要论文
英文论文(文章):
[1].A. Charnes, W.W. Cooper and Q.L. Wei, A semi-infinite multicriteria programming approach to data envelopment analysis with many decision-making units, Center for Cybernetic Studies Report CCS 551,Sep.1986.
[2].A. Charnes, W.W. Cooper, Q.L. Wei and M. Yue, Compositive data envelopment analysis and multi-objective programming, Center for Cybernetic Studies Report CCS 633, June 1989.
[3].A. Charnes, W.W. Cooper and Q.L. Wei, A two-person zero-sum semi-infinite game model and DEA with infinitely many decision making units, Center for Cybernetic Studies Report CCS 572,1986.
[4].A. Charnes, W.W. Cooper, Q.L.Wei and Z.M. Huang, Cone Ratio Data Envelopment Analysis and Multi-objective Programming, International Journal of Systems Science, 20(1989)7, 1099-1118. (SCI).
[5].G. Yu, Q.L.Wei and P.Brockett,A Generalized Data Envelopment Analysis Model,Annals of Operations Research,66(1996), 47-89. (SCI) .
[6]. Q.L. Wei and G. Yu,Analyzing the Properties of K - Cone in Generalized Data Envelopment Analysis Model,Journal of Econometrics,80(1997),63-84. (SCI) .
[7]. G. Yu, Q.L.Wei, P.Brockett and L.Zhou,Construction of all DEA efficient surfaces of the production possibility set under the Generalized Data Envelopment Analysis Model,European Journal of Operational Research, 95(1996), 491-510. (SCI) .
[8]. A. Charnes, W.W.cooper, Q.L.Wei and Z.M.Huang,Fundamental Theorems of Non-dominated Solutions Associated with Cone in Normed Linear Spaces,Journal of Mathematical Analysis and Applications,150(1990), 54-78. (SCI)
[9] Z.M.Huang, D.B.Sun and Q.L.Wei,Theories and Applications of the Compositive Data Envelopment Analysis Model with Cone Structure,SCI-TECH Information Services,(1995),57-73. (SCI)
[10]. W.W. Copper, Q.L. Wei and G. Yu,Using Displaced Cone Representations in DEA Models for Non-dominated Solutions in Multi-objective Programming,Journal of Systems Science and Mathematical Sciences,10(1997),41-49.
[11]. A. Charnes, Z.M. Huang, J.J. Rousseau and Q.L. Wei, Cone Extremal Solution of Multi-Payoff Game with Cross-Constrained Strategy Sets, Optimization, 21(1990)1, 51-69. (SCI)
[12]. G., Hao , Wei Q.L. and H. Yan, The Generalized DEA Model and the Convex Cone Constrained Game, European Journal of Operational Research, 126(2000),515-525. (SCI).
[13]. G., Hao, Wei Q.L. and H. Yan , A Game Theoretical Model of DEA Efficiency,Journal of Operational Research Society, 51(2000), 1-11 (SCI).
[14]. Yan H., Wei Q.L and G.. Hao, DEA Models for Resource Reallocation and Production Input/Output Estimation, European Journal of Operational Research,136(2002), 19-31. (SCI).
[15]. Q.L. Wei, H.Yan and Jun Wang, The Uniqueness of Optimal Solution for Linear Programming Problem, Journal of Systems Science and Information, 2(2004)2, 345-351.
[16]. Q.L.Wei, B.Sun and Z.J.Xiao, Measuring Technical Progress with Data Envelopment Analysis, European Journal of Operational Research, 80(1995) ,691-702. (SCI)
[17]. Q.L.Wei and W.C.Chiang, The production frantier of DEA and Its applications in microeconomics, Proceedings of the Second International Conference on Systems Science and Systems Engineering, International Academic Publishers,(1993), 107-112,
[18]. Q.L.Wei and W.C.Chiang, An Integral Method for the Measurement of Technological Progress and Data Envelopment Analysis d, Journal of Systems Science and Systems Engineering, 5(1996) 1, 75-86.
[19]. Q.L. Wei and H. Yan, An Algebra-Based Vertex Identification Process on Polytopes, Beijing Mathematics 3 (1997)2, 40-48.
[21] H.Yan and Wei Q.L., A Method of Transferring Cones of Intersection-form to Cones of Sum-form and Its Applications in DEA Models, International Journal of System Science,31(2000)5,629-638. (SCI)
[20] Wei Q.L. and H.Yan, A Method of Transferring Polyhedron Between the Intersection-Form and the Sum-Form, Computers and Mathematics with Applications, 41(2001),1327-1342. (SCI)
[22] Wei Q.L. and Yan H., A Method for Enumerating All Extreme Point and Extreme Rays on Unbounded Polyhedron, Journal of Systems Science and Information, 3(2005)3, 603-610.
[23] Z.Huang ,S.L.Li and Q.L.Wei, Quasi-Concave Multiple Objective Programming with Cone Structure), Systems Science and Mathematical Sciences, 9(1996), 27-37.
[24] Wei Q.L., H. Yan, J. Ma, and Z.Fan, A Compromise Weight for Multi-Criteria Group Making with Individual Preference, Journal of Operational Research Society, 51(2000), 625-634. (SCI).
[25]. Wei Q.L., J.Ma and Z.Fan, A Parameter Analysis Method for the Weight-Set to Satisfy Preference Orders of Alternatives in Additive Multi-Criteria Value Models, Journal of Multi-Criteria Decision Analysis, 9(2000),181-190.
发表在国内期刊论文:
[1]. 魏权龄, 评价相对有效性的DEA模型,《发展战略与系统工程》,学术期刊出版社,1987.
[2]. 魏权龄, 数据包络分析(DEA),科学通报, 45(2000)17,1793-1808 .
[3]. 魏权龄, DEA及其经济背景, 中国运筹学会第七次全国学术交流会论文集, Global – Link Publishing Company, 香港, 2004,5-30.
[4]. 魏权龄, 输入和输出DEA模型中弱DEA有效与弱Pareto之间的等价性.系统工程理论与实践, 2002(10), 72-80.
[5]. 张倩伟, 魏权龄, 关于DEA有效性“新方法”的探讨, 数学的认识与实践, 37(2007)22,94-97.
[6]. 魏权龄, 张倩伟, DEA的非参数规模收益预测方法, 中国管理科学,16(2008)2,25-29.
[7].史健,魏权龄DEA方法在卫生经济学中的应用, 数学的实践与认识, 34(2004)4, 59-66.
[8].史健,魏权龄, 关于要素不可控条件下的DEA模型的特性分析, 数学的实践与认识, 34(2004)5, 74-80.
[9].韩松, 魏权龄, 非参数DEA模型最优解的(弱)Pareto性质研究, 中国运筹学会第七次全国学术交流会论文集, Global –Link Publishing Company, 香港, 2004,364-369.
[10] 韩松,魏权龄.资源配置的非参数DEA模型.系统工程理论与实践, 22(2002),59-64..
[11] 魏权龄, 汪俊, 闫洪, 无界凸多面体由“和形式”向“交形式”的转化, 系统工程理论与实践, 24(2004)3,87-90.
[12] 魏权龄,马赞甫,阎洪,DEA的交形式生产可能集及其应用.数学的实践与认识,37(2007) 4,62-69.
[13] 魏权龄,崔宇刚,肖志杰.使用DEA方法对全国性学会组织进行效益评价的分析,统计数据分析和系统分析学术会议论文集.学术期刊出版社,1989,74-84.
[14] 肖志杰,魏权龄.数据包络与边际分析——微观经济中的非参数分析.中国管理科学,1993(2) ,1-6..
[15] 魏权龄;肖志杰.生产函数与综合DEA模型CCWY.系统科学与数学,11(1991)1,43-51.
[16] 魏权龄,胡显佑,肖志杰.DEA方法与前沿生产函数.经济数学,1988(5),1-13..
[17] 魏权龄,李其荣,肖志杰.估计技术进步滞后及超前年限的要素增长型DEA模型.数量经济技术经济研究,1991(3), 28-34.
[18] 魏权龄,D.B.Sun,肖志杰.DEA方法与技术进步评估.系统工程学报,6(1991)2,1-11.
[19] 李宏余,魏权龄.决策单元的变更对DEA有效性的影响.北京航空航天大学学报,1991(1),85-97.
[20] 魏权龄,卢刚,岳明.关于综合DEA模型中的DEA有效决策单元集合的几个恒等式.系统科学与数学, 9(1989)3,282-288.
[21] 胡显佑,魏权龄.用单纯形方法确定真正的有效生产前沿面.数学物理学报,12(1992)3,351-360.
[22] 魏权龄,吴海东, 岳明.综合模型 CCWY 中增减决策单元与DEA有效性. 中国管理科学,1993(1), 26-35.
[23] 魏权龄,卢刚,蒋一清,盛景烨.DEA方法在企业经济效益评价中的应用.统计研究,34(1990)2,58-62.
[24] 魏权龄,岳明.DEA概论与CCR模型——数据包络分析(一) 系统工程理论与实践, 1989(1),58-69.
[25] 魏权龄,崔宇刚.评价相对有效性的几个重要DEA模型——数据包络分析(二).系统工程理论与实践,1989(2),55-68.
[26] 魏权龄,卢刚.DEA方法与模型的应用——数据包络分析(三).系统工程理论与实践, 1989(3),67-75.
[27] 魏权龄,岳明.综合的DEA模型CCWY——数据包络分析(四). 系统工程理论与实践,1989(4),75-80.
[28] 魏权龄,应玫茜.直接最优化方法收敛性与不动点.系统科学与数学,1(1981)2,81-98.
[29] 顾基发,魏权龄.多目标决策问题,应用数学与计算数学.1980(1),29-48.
[30] 冯英浚,魏权龄.多目标规划问题解的一般形式.模糊数学,1982(2),29-35.
[31] 应玫茜, 徐瑞恩, 魏权龄.数学规划的稳定性.数学学报,18(1975)2,124-135.
[32] 魏权龄,应玫茜.多目标数学规划的稳定性.数学学报,24(1981)3,321—330.
[33] 魏权龄,数学规划在另外两种意义之下的稳定性. 曲阜师范大学学报(自然科学版) 1981(1),14-18.
[34] 魏权龄,应玫茜.单变量多目标数学规划解的性质及解法.应用数学学报,3(1980) 4,382-388
[35] 魏权龄,关于线性约束条件下线性逼近方法的两点注记.南昌大学学报,1982(1).19-28.
[36] 魏权龄, 王鑫, DEA与数据挖掘, 数学的认识与实践, 39 (2009) 24.
[37] 魏权龄, 庞立永, 链式网络DEA模型, 数学的认识与实践, 40 (2010) 1.