摘要翻译:
在$Fl(V)\乘Fl(V)\乘V$中的$GL(V)$的轨道集是有限的,并由所罗门的一部著作中的某些修饰排列集参数化。我们描述了这个修饰排列集和三元组集之间的一个反向RSK对应(双射):一对标准的年轻表和一个额外的划分。它将轨道集划分为组合单元。我们证明了同样的划分是由一个对轨道的一般同态向量的类型给出的。我们猜想,在由$Fl(V)\乘Fl(V)\乘V$引起的$GL(V)$上的双模上的双模Kazhdan-Lusztig单元给出了相同的划分。我们还对$gl(V)\乘以V$上的单能反物特征束的分类给出了猜想应用。
---
英文标题:
《Mirabolic Robinson-Schensted-Knuth correspondence》
---
作者:
Roman Travkin
---
最新提交年份:
2021
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
The set of orbits of $GL(V)$ in $Fl(V)\times Fl(V)\times V$ is finite, and is parametrized by the set of certain decorated permutations in a work of Solomon. We describe a Mirabolic RSK correspondence (bijective) between this set of decorated permutations and the set of triples: a pair of standard Young tableaux, and an extra partition. It gives rise to a partition of the set of orbits into combinatorial cells. We prove that the same partition is given by the type of a general conormal vector to an orbit. We conjecture that the same partition is given by the bimodule Kazhdan-Lusztig cells in the bimodule over the Iwahori-Hecke algebra of $GL(V)$ arising from $Fl(V)\times Fl(V)\times V$. We also give conjectural applications to the classification of unipotent mirabolic character sheaves on $GL(V)\times V$.
---
PDF链接:
https://arxiv.org/pdf/0802.1651