摘要翻译:
本文讨论了泛酉映射U之后的泛非酉映射M,它的von Neumann熵增益与计算的热力学熵产相一致。对于多体量子库,我们证明M可以是空间框架所有平移的平均。假设微观熵产生和宏观熵产生一致,得到了帧平均熵增益与相对熵之间的新方程。我们的M图与最近在量子参考系理论中使用的称为twirl的旧图一致。得到了与我们的结果有关的结果,并对其中的一些结果作了简要的讨论。提到了帧平均(旋转)与现实世界不可逆性的可能相关性。
---
英文标题:
《Thermodynamic and quantum entropy gain of frame averaging》
---
作者:
Lajos Di\'osi
---
最新提交年份:
2011
---
分类信息:
一级分类:Physics 物理学
二级分类:Quantum Physics 量子物理学
分类描述:Description coming soon
描述即将到来
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:General Relativity and Quantum Cosmology 广义相对论与量子宇宙学
分类描述:General Relativity and Quantum Cosmology Areas of gravitational physics, including experiments and observations related to the detection and interpretation of gravitational waves, experimental tests of gravitational theories, computational general relativity, relativistic astrophysics, solutions to Einstein's equations and their properties, alternative theories of gravity, classical and quantum cosmology, and quantum gravity.
广义相对论和量子宇宙学引力物理领域,包括与探测和解释引力波有关的实验和观测、引力理论的实验检验、计算广义相对论、相对论天体物理学、爱因斯坦方程及其性质的解、引力的替代理论、经典宇宙学和量子宇宙学以及量子引力。
--
一级分类:Physics 物理学
二级分类:Mathematical Physics 数学物理
分类描述:Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--
一级分类:Mathematics 数学
二级分类:Mathematical Physics 数学物理
分类描述:math.MP is an alias for math-ph. Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
math.mp是math-ph的别名。这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--
---
英文摘要:
We are discussing a universal non-unitary map M subsequent to a generic unitary map U, whose von Neumann entropy gain coincides with the calculated thermodynamic entropy production. For many-body quantum reservoirs we prove that M can be the averaging over all translations of the spatial frame. Assuming the coincidence of microscopic and macroscopic entropy productions leads to a novel equation between entropy gain of frame averaging and relative entropy. Our map M turns out to coincide with the older one called twirl, used recently in the theory of quantum reference frames. Related results to ours have been obtained and we discuss some of them briefly. Possible relevance of frame averaging (twirling) for real world irreversibility is mentioned.
---
PDF链接:
https://arxiv.org/pdf/711.2822