摘要翻译:
在这篇综述文章中,我们讨论了一个以微分梯度范畴作为空间模型的非交换几何框架。我们概述了一个非交换空间范畴的构造,并包括对非交换动机的讨论。我们提出了一个在模环上取值的模测度。这使我们能够引入某些非交换空间的zeta函数。
---
英文标题:
《Noncommutative Geometry in the Framework of Differential Graded
Categories》
---
作者:
Snigdhayan Mahanta
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Quantum Algebra 量子代数
分类描述:Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
量子群,skein理论,运算代数和图解代数,量子场论
--
---
英文摘要:
In this survey article we discuss a framework of noncommutative geometry with differential graded categories as models for spaces. We outline a construction of the category of noncommutative spaces and also include a discussion on noncommutative motives. We propose a motivic measure with values in a motivic ring. This enables us to introduce certain zeta functions of noncommutative spaces.
---
PDF链接:
https://arxiv.org/pdf/0805.1628