摘要翻译:
如果R、S、T是不可约的SL_3表示,我们给出了R张量S到T的等变映射空间的一个基的简单而明确的描述。我们将此方法应用于不变函数域的合理性问题。特别地,我们证明了34次平面曲线模空间的合理性。这使用了一个判据,该判据通过一个SL-作用来确保Grassmannians的某些商的稳定合理性。
---
英文标题:
《A Clebsch-Gordan formula for SL_3 and applications to rationality》
---
作者:
Christian B\"ohning and Hans-Christian Graf v. Bothmer
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
---
英文摘要:
If R, S, T are irreducible SL_3-representations, we give an easy and explicit description of a basis of the space of equivariant maps from R tensor S to T. We apply this method to the rationality problem for invariant function fields. In particular, we prove the rationality of the moduli space of plane curves of degree 34. This uses a criterion which ensures the stable rationality of some quotients of Grassmannians by an SL-action.
---
PDF链接:
https://arxiv.org/pdf/0812.3278