摘要翻译:
本文研究了一种特定的能够到达远距离的低功率无线技术,即LoRa。这种技术可用于涉及许多传输设备的城市中的不同应用,但需要松散的通信约束。我们关注电网,在电网中,LoRa终端设备是智能电表,发送各自家庭在给定期间所需的平均功率。由LoRa网关成功解码的数据被聚合器用于重建日常家庭的概况。我们展示了来自LoRa和非LoRa设备的并发传输的干扰如何对通信中断概率和链路有效比特率产生负面影响。此外,我们还利用实际用电数据对基于时间和基于事件的采样策略进行了比较,显示了基于时间和基于事件的采样策略的优势。然后,我们利用这种分析来评估网关范围,以达到导致给定要求的信号重建的平均中断概率。我们还讨论了,尽管所提出的分析集中在电力计量,但它可以很容易地扩展到具有类似需求的任何其他智慧城市应用,如水计量或交通监控。
---
英文标题:
《Long-range Low-power Wireless Networks and Sampling Strategies in
Electricity Metering》
---
作者:
Mauricio C. Tom\'e and Pedro H. J. Nardelli and Hirley Alves
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science 计算机科学
二级分类:Systems and Control 系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
---
英文摘要:
This paper studies a specific low-power wireless technology capable of reaching a long range, namely LoRa. Such a technology can be used by different applications in cities involving many transmitting devices while requiring loose communication constrains. We focus on electricity grids, where LoRa end-devices are smart-meters that send the average power demanded by their respective households during a given period. The successfully decoded data by the LoRa gateway are used by an aggregator to reconstruct the daily households' profiles. We show how the interference from concurrent transmissions from both LoRa and non-LoRa devices negatively affect the communication outage probability and the link effective bit-rate. Besides, we use actual electricity consumption data to compare time-based and event-based sampling strategies, showing the advantages of the latter. We then employ this analysis to assess the gateway range that achieves an average outage probability that leads to a signal reconstruction with a given requirement. We also discuss that, although the proposed analysis focuses on electricity metering, it can be easily extended to any other smart city application with similar requirements, like water metering or traffic monitoring.
---
PDF链接:
https://arxiv.org/pdf/1803.02084