全部版块 我的主页
论坛 经济学人 二区 外文文献专区
240 0
2022-04-10
摘要翻译:
尽管基于DPLL过程的求解器的性能最近有了改进,但搜索算法仍有可能聚焦于搜索空间的错误区域,从而阻止求解器在可接受的时间量内返回解。这种前景是一个真正值得关注的问题,例如在工业环境中,用户通常期望一致的性能。为了克服这个问题,我们提出了一个框架,允许学习和使用领域特定的启发式在基于DPLL过程的求解器。学习是在目标域的典型实例上离线完成的,然后用学习到的启发式进行选择点的选择。在本文中,我们重点研究了答案集编程(ASP)求解器。在我们的实验中,领域特定启发式的引入将硬实例的性能提高了3个数量级(平均2个数量级),几乎完全消除了由于等待答案变得不可接受而不得不终止求解器的情况。
---
英文标题:
《Improving DPLL Solver Performance with Domain-Specific Heuristics: the
  ASP Case》
---
作者:
Marcello Balduccini
---
最新提交年份:
2011
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Logic in Computer Science        计算机科学中的逻辑
分类描述:Covers all aspects of logic in computer science, including finite model theory, logics of programs, modal logic, and program verification. Programming language semantics should have Programming Languages as the primary subject area. Roughly includes material in ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2; some material in F.4.3 (formal languages) may also be appropriate here, although Computational Complexity is typically the more appropriate subject area.
涵盖计算机科学中逻辑的所有方面,包括有限模型理论,程序逻辑,模态逻辑和程序验证。程序设计语言语义学应该把程序设计语言作为主要的学科领域。大致包括ACM学科类D.2.4、F.3.1、F.4.0、F.4.1和F.4.2中的材料;F.4.3(形式语言)中的一些材料在这里也可能是合适的,尽管计算复杂性通常是更合适的主题领域。
--

---
英文摘要:
  In spite of the recent improvements in the performance of the solvers based on the DPLL procedure, it is still possible for the search algorithm to focus on the wrong areas of the search space, preventing the solver from returning a solution in an acceptable amount of time. This prospect is a real concern e.g. in an industrial setting, where users typically expect consistent performance. To overcome this problem, we propose a framework that allows learning and using domain-specific heuristics in solvers based on the DPLL procedure. The learning is done off-line, on representative instances from the target domain, and the learned heuristics are then used for choice-point selection. In this paper we focus on Answer Set Programming (ASP) solvers. In our experiments, the introduction of domain-specific heuristics improved performance on hard instances by up to 3 orders of magnitude (and 2 on average), nearly completely eliminating the cases in which the solver had to be terminated because the wait for an answer had become unacceptable.
---
PDF链接:
https://arxiv.org/pdf/1102.2125
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群