摘要翻译:
本文证明了任意三维正规仿射拟齐次SL(2)-簇都可以描述为四维仿射超曲面的范畴商。此外,我们还证明了任意三维正规仿射拟齐次SL(2)-簇的Cox环具有唯一的定义方程。这使得我们可以利用超曲面的不同Git商构造SL(2)-等变翻转。利用球面变体理论,我们用二维着色锥描述了SL(2)-翻转。
---
英文标题:
《On the geometry of SL(2)-equivariant flips》
---
作者:
Victor Batyrev and Fatima Haddad
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
In this paper, we show that any 3-dimensional normal affine quasihomogeneous SL(2)-variety can be described as a categorical quotient of a 4-dimensional affine hypersurface. Moreover, we show that the Cox ring of an arbitrary 3-dimensional normal affine quasihomogeneous SL(2)-variety has a unique defining equation. This allows us to construct SL(2)-equivariant flips by different GIT-quotients of hypersurfaces. Using the theory of spherical varieties, we describe SL(2)-flips by means of 2-dimensional colored cones.
---
PDF链接:
https://arxiv.org/pdf/0803.2504