全部版块 我的主页
论坛 经济学人 二区 外文文献专区
273 0
2022-04-10
摘要翻译:
本文提出了一种多级注意力模型来解决弱标记音频分类问题。音频分类的目的是预测音频片段中存在或不存在音频事件。最近,Google发布了一个大规模的弱标记数据集Audio Set,其中每个音频片段只包含音频事件的存在或不存在,而没有音频事件的开始和偏移时间。我们的多级注意模型是对以前提出的单级注意模型的扩展。它由若干个应用于中间神经网络层的注意模块组成。这些注意力模块的输出被连接到一个向量,然后是一个多标签分类器,以做出每个类别的最终预测。实验表明,该模型的平均精度(mAP)为0.360,优于目前最先进的单水平注意模型的0.327和谷歌基线模型的0.314。
---
英文标题:
《Multi-level Attention Model for Weakly Supervised Audio Classification》
---
作者:
Changsong Yu, Karim Said Barsim, Qiuqiang Kong, Bin Yang
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--

---
英文摘要:
  In this paper, we propose a multi-level attention model to solve the weakly labelled audio classification problem. The objective of audio classification is to predict the presence or absence of audio events in an audio clip. Recently, Google published a large scale weakly labelled dataset called Audio Set, where each audio clip contains only the presence or absence of the audio events, without the onset and offset time of the audio events. Our multi-level attention model is an extension to the previously proposed single-level attention model. It consists of several attention modules applied on intermediate neural network layers. The output of these attention modules are concatenated to a vector followed by a multi-label classifier to make the final prediction of each class. Experiments shown that our model achieves a mean average precision (mAP) of 0.360, outperforms the state-of-the-art single-level attention model of 0.327 and Google baseline of 0.314.
---
PDF链接:
https://arxiv.org/pdf/1803.02353
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群