摘要翻译:
本文给出了两参数布朗运动加权二次变分过程的一个中心极限定理。作为应用,我们证明了在规则网格$g_n$上观察到的双参数扩散$Y=(Y_{(s,t)})_{(s,t)\在[0,1]^2}中的离散化二次变差$\sum_{i=1}^{[n s]}\sum_{j=1}^{[n t]}\delta_{i,j}Y^2$是$Y$的二次变差的渐近正规估计。
---
英文标题:
《Estimation of quadratic variation for two-parameter diffusions》
---
作者:
Anthony R\'eveillac
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
In this paper we give a central limit theorem for the weighted quadratic variations process of a two-parameter Brownian motion. As an application, we show that the discretized quadratic variations $\sum_{i=1}^{[n s]} \sum_{j=1}^{[n t]} | \Delta_{i,j} Y |^2$ of a two-parameter diffusion $Y=(Y_{(s,t)})_{(s,t)\in[0,1]^2}$ observed on a regular grid $G_n$ is an asymptotically normal estimator of the quadratic variation of $Y$ as $n$ goes to infinity.
---
PDF链接:
https://arxiv.org/pdf/801.3027