摘要翻译:
用于建立和评价模型的训练集(源域)和测试集(目标域)之间的数据分布差异影响语音情感识别的性能。这是一个常见的问题,因为多项研究表明,当情感分类器暴露在与构建情感分类器所使用的分布不匹配的数据中时,它们的性能会下降。当训练数据和测试数据来自不同的领域时,数据分布的差异变得非常明显,导致验证性能和测试性能之间存在很大的差距。由于标注新数据的成本很高,而且大量的未标注数据,从现有的未标注数据中提取出尽可能多的有用信息是至关重要的。本研究探讨了使用对抗性多任务训练来提取训练域和测试域之间的共同表示。主要任务是预测基于情绪属性的唤醒、价态或优势的描述符。次要任务是学习无法区分训练域和测试域的通用表示。通过使用梯度反转层,来自领域分类器的梯度被用来使源和目标领域表示更加接近。我们表明,在所有情绪维度上,利用未标记的数据一致地导致更好的情绪识别性能。我们可视化对抗训练对整个深度学习体系结构的特征表示的影响。分析表明,当数据传递到网络的更深层次时,训练域和测试域的数据表示会收敛。我们还评估了使用浅层神经网络和深度
神经网络(DNN)在性能上的差异,以及任务和领域分类器使用的共享层数的影响。
---
英文标题:
《Domain Adversarial for Acoustic Emotion Recognition》
---
作者:
Mohammed Abdelwahab, Carlos Busso
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
---
英文摘要:
The performance of speech emotion recognition is affected by the differences in data distributions between train (source domain) and test (target domain) sets used to build and evaluate the models. This is a common problem, as multiple studies have shown that the performance of emotional classifiers drop when they are exposed to data that does not match the distribution used to build the emotion classifiers. The difference in data distributions becomes very clear when the training and testing data come from different domains, causing a large performance gap between validation and testing performance. Due to the high cost of annotating new data and the abundance of unlabeled data, it is crucial to extract as much useful information as possible from the available unlabeled data. This study looks into the use of adversarial multitask training to extract a common representation between train and test domains. The primary task is to predict emotional attribute-based descriptors for arousal, valence, or dominance. The secondary task is to learn a common representation where the train and test domains cannot be distinguished. By using a gradient reversal layer, the gradients coming from the domain classifier are used to bring the source and target domain representations closer. We show that exploiting unlabeled data consistently leads to better emotion recognition performance across all emotional dimensions. We visualize the effect of adversarial training on the feature representation across the proposed deep learning architecture. The analysis shows that the data representations for the train and test domains converge as the data is passed to deeper layers of the network. We also evaluate the difference in performance when we use a shallow neural network versus a \emph{deep neural network} (DNN) and the effect of the number of shared layers used by the task and domain classifiers.
---
PDF链接:
https://arxiv.org/pdf/1804.0769