摘要翻译:
本文导出了经典谐振子线性耦合到被外界介质拖动的谐波热浴的非平衡瞬态功涨落定理和Jarzynski等式。与熔池的耦合使动力学不仅耗散,而且一般是非马尔可夫的。由于我们不假定任何关于调和浴的光谱性质,所以推导不仅限于马尔可夫浴,而且对于非马尔可夫浴更一般。
---
英文标题:
《Transient State Work Fluctuation Theorem for a Driven Classical System》
---
作者:
Rajarshi Chakrabarti
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We derive the nonequilibrium transient state work fluctuation theorem and also the Jarzynski equality for a classical harmonic oscillator linearly coupled to a harmonic heat bath, which is dragged by an external agent. Coupling with the bath makes the dynamics not only dissipative but also non-Markovian in general. Since we do not assume anything about the spectral nature of the harmonic bath the derivation is not only restricted to the Markovian bath rather it is more general, for a non-Markovian bath.
---
PDF链接:
https://arxiv.org/pdf/802.0268