摘要翻译:
本文推导了欧式电力看涨期权定价中的隐含波动率估计公式,其中收益函数分别为$v=(S^{\alpha}_t-k)^{+}$和$v=(S^{\alpha}_t-k^{\alpha})^{+}$($\alpha>0$)。利用二次Taylor近似,建立了欧式幂看涨期权隐含波动率的计算公式,并将Charles J.Corrado等人(1996)的隐含波动率公式推广到一般幂期权定价。并给出了Monte-Carlo仿真结果。
---
英文标题:
《Implied volatility formula of European Power Option Pricing》
---
作者:
Jingwei Liu, Xing Chen
---
最新提交年份:
2012
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
英文摘要:
We derive the implied volatility estimation formula in European power call options pricing, where the payoff functions are in the form of $V=(S^{\alpha}_T-K)^{+}$ and $V=(S^{\alpha}_T-K^{\alpha})^{+}$ ($\alpha>0$)respectively. Using quadratic Taylor approximations, We develop the computing formula of implied volatility in European power call option and extend the traditional implied volatility formula of Charles J.Corrado, et al (1996) to general power option pricing. And the Monte-Carlo simulations are also given.
---
PDF链接:
https://arxiv.org/pdf/1203.0599