摘要翻译:
我们定义了扭曲的de Rham上同调,并说明了如何用它来定义任意环上形式为$\int g(x)e^{f(x)}dx$的积分概念。我们还讨论了一类积分族的定义和积分同调定义的一些性质。我们给出了如何利用扭曲的de Rham上同调来定义p-adic上同调上的Frobenius映射。最后,我们考虑具有一般系数的二维拓扑量子场论。
---
英文标题:
《Twisted de Rham cohomology, homological definition of the integral and
"Physics over a ring"》
---
作者:
Albert Schwarz, Ilya Shapiro
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
---
英文摘要:
We define the twisted de Rham cohomology and show how to use it to define the notion of an integral of the form $\int g(x) e^{f(x)}dx$ over an arbitrary ring. We discuss also a definition of a family of integrals and some properties of the homological definition of integral. We show how to use the twisted de Rham cohomology in order to define the Frobenius map on the p-adic cohomology. Finally, we consider two-dimensional topological quantum field theories with general coefficients.
---
PDF链接:
https://arxiv.org/pdf/0809.0086